Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

2007-04-16
2007-01-0405
In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Technical Paper

Small Bore Diesel Engine Combustion Concept

2015-04-14
2015-01-0788
Small bore diesel engines often adopt a two-valve cylinder head and a non-central injector layout to expand the port flow passage area. This non-central injector layout causes asymmetrical gas flow and fuel distribution, resulting in worse heat losses and a less homogenous fuel-air mixture than an equivalent four-valve cylinder head layout with a central injector. This paper describes the improvement of piston bowl geometry to achieve a more homogeneous gas flow and fuel-air mixture. This concept reduced fuel consumption by 2.5% compared to the original piston bowl geometry, while also reducing NOx emissions by 10%.
Technical Paper

Simultaneous PM and NOx Reduction System for Diesel Engines

2002-03-04
2002-01-0957
A new after-treatment system called DPNR (Diesel Particulate-NOx Reduction System) has been developed for simultaneous and continuous reduction of particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust gas. This system consists of both a new catalytic technology and a new diesel combustion technology which enables rich operating conditions in diesel engines. The catalytic converter for the DPNR has a newly developed porous ceramic structure coated with a NOx storage reduction catalyst. A fresh DPNR catalyst reduced more than 80 % of both PM and NOx. This paper describes the concept and performance of the system in detail. Especially, the details of the PM oxidation mechanism in DPNR are described.
Technical Paper

Significance of Electronics Platforms and the Motivation for JasPar

2006-10-16
2006-21-0020
In recent vehicles, E/E architecture is defined and used as a platform to accommodate various electronics features for better development efficiency, lower cost and higher quality. As electronics features increase and integrated control systems make vehicle electronics more complex, good electronics platforms are vital for today's and future vehicle development. This paper first describes the evolution of vehicle electronics and its recent trend and then addresses the challenges facing vehicle electronics: ✓ More integrated control systems ✓ More software ✓ More networks ✓ Shorter time to market Finally, why JasPar1), Japan Automotive Software Platform and Architecture, was founded and how it is organized will be described including the working group activities on FlexRay implementation.
Technical Paper

Road Crossing Assistance Method Using Object Detection Based on Deep Learning

2022-03-29
2022-01-0149
This paper describes a method for assisting pedestrians to cross a road. As motorization develops, pedestrian protection techniques are becoming more and more important. Advanced driving assistance systems (ADAS) are improving rapidly to provide even greater safety. However, since the accident risk of pedestrians remains high, the development of an advanced walking assistance system for pedestrian protection may be an effective means of reducing pedestrian accidents. Crossing a road is one of the highest risk events, and is a complex phenomenon that consists of many dynamically changing elements such as vehicles, traffic signals, bicycles, and the like. A road crossing assistance system requires three items: real-time situational recognition, a robust decision-making function, and reliable information transmission. Edge devices equipped with autonomous systems are one means of achieving these requirements.
Technical Paper

Research on the Measures for Improving Cycle-to-Cycle Variations under High Tumble Combustion

2016-04-05
2016-01-0694
Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society. An effective way for accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid and conventional vehicles in recent years. Toyota has been introducing these technologies as ESTEC (Economy with Superior Thermal Efficient Combustion). Improving cycle-to-cycle variations in combustion, in addition to fast combustion is essential for achieving high engine thermal efficiency.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Technical Paper

Reduction of Friction Losses in Crankcase at High Engine Speeds

2006-10-16
2006-01-3350
Recently, engines achieving high power levels are becoming increasingly common. The trend is toward increasing the inflow of lubricating oil into the crankcase through several factors (for example, increasing the flow rate of the cooling oil jets in order to reduce the thermal load of the pistons). In addition, the mechanical losses induced by the motion of the crankshaft and connecting rods through the additional oil are intensified due to the higher engine speeds at maximum power. In this article, we confirmed a method of separating the pumping loss and the agitation loss by measuring the pressure in the crankcase and an empirical formula was found for predicting pumping loss from displacement and ventilating area. We also investigated the effect of reducing the lubrication oil flow rate, as well as other factors affecting the oil flow, on the mechanical loss at high engine speeds.
Technical Paper

Reducing the Amount of Lubricating Engine Oil by Using a New Crankshaft Bearing with Eccentric Oil Groove

2004-10-25
2004-01-3048
Oil pump down sizing is one of the effective method to improve engine friction loss. Reducing the required amount of lubricating engine oil can be achieved by the application of a new crankshaft bearing with an eccentric oil groove. By adopting a bearing with an eccentric groove, we found the well balanced specification which can keep the necessary amount of oil to the crankshaft pin and reduce leaking oil from crankshaft main journal. Measuring oil amount distribution in engine running condition simultaneously and checking capability of eliminating contamination analytically have achieved.
Technical Paper

Rapid Boundary Detection for Model Based Diesel Engine Calibration

2011-04-12
2011-01-0741
In recent years, engine control systems have become more and more complex because of the growing pressure to develop technical innovations due to social pressures such as global warming and the depletion of fossil fuels. On the other hand, products must be launched on the market in a timely manner and at low cost. For these reasons, calibration processes have become more sophisticated. It is possible to improve the efficiency of calibration by making good use of models, and a calibration process that incorporates models is called model based calibration (MBC). MBC is a valid means of reducing the number of measurement points to some extent by statistical engine modeling and design of experiment (DoE) methodology which places measurement points in order to maximize modeling accuracy. However, it is still necessary to spend much time carrying out boundary detection testing before DoE.
Technical Paper

Performance of Two/Four Stroke Gasoline HCCI Engine with Electromagnetic Valve Train

2007-07-23
2007-01-1868
Comparison of net thermal efficiency and emission in two and four stroke gasoline HCCI engine has been carried out for various valve-timings as negative valve overlap and exhaust valve double opening. The valve timings could easily be converted from a mode to another by configuring schedule of electromagnetic valve-train. Extension of operable torque with high thermal efficiency had been expected in two-stroke HCCI operation, however friction and supercharger loss curtailed about half of the gain in indicated thermal efficiency. In four-stroke operation modes, exhaust valve double opening (‘reinduction’ or ‘rebreathing’) showed the best net thermal efficiency and emission, however the extension of high load limit could not be achieved considerably.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Technical Paper

Obstacle Detection Systems for Vehicle Safety

2004-10-18
2004-21-0057
The increase in automobile accidents has heightened the awareness of safety in the general public, and serious safety measures have been pushed forward in various countries. Although those efforts have achieved a certain level of success, more effective methods are needed to cope with further increases of automobile ownership.Besides the collision safety, measures that prevent accidents or reduce the possibility of accidents will now be necessary to reduce the number of injuries.Here, we will present the current development status and issues for an obstacle recognition system that reduces the likelihood of accidents by utilizing radars and image sensors.
Technical Paper

Numerical Analysis of Flow in the Induction System of an Internal Combustion Engine -Multi-Dimensional Calculation Using a New Method of Lines

1990-02-01
900255
Multi-dimensional code has been developed to simulate the effect of geometry on mass flow rate and flow pattern in the induction system of an internal combustion engine. The unsteady compressible Navier-Stokes equations in general curvilinear coordinates are solved by a new method of lines. In the method of lines, the governing equations are spatially discretized by a finite difference approximation and the resulting system of ordinary differential equations is integrated. As a time integration scheme, we newly propose to use the rational Runge-Kutta scheme in order to efficiently simulate the flows in the induction system. The domain-decomposition technique is introduced so that body-fitted structured grid can be easily generated for such complex geometry as a real intake port shape. The present code is applied to 2 and 3 dimensional steady flows in intake port/cylinder assembly with a valve.
Technical Paper

Novel Power Conversion System for Cost Reduction in Vehicles with 42V/14V Power Supply

2003-03-03
2003-01-0307
In recent years, attention is being given to 42V power supply technology for solving the problem of increased power demand in vehicles. Since 2001, Toyota Motor Corporation has been marketing a mild hybrid system (THS-M) in order to further improve fuel economy and reduce emissions; this system requires both 42V and 14V power sources. The THS-M system consists of a 42V motor generator (M/G) connected to the engine crankshaft with a belt; an inverter; a 36V battery; a DC/DC converter for stepping down the 42V power supply to a conventional 12V battery; and high-power related electrical components. These components require additional costs, which must be reduced in order to increase the sales volume of THS-M vehicles. We have devised a method to eliminate the conventional DC/DC converter from the THS-M, and as a result we have developed a new, revolutionary power conversion system (multi-function inverter).
Technical Paper

New Cordierite Diesel Particulate Filter Material for the Diesel Particulate - NOx Reduction System.

2004-03-08
2004-01-0953
The regulation of emissions discharged from diesel engines has become stricter worldwide. The regulatory values allowed for particulate matter (PM) as well as NOx will be lowered, especially in the Europe Euro 5, the U.S. EP 07, and the new Japanese long-term regulations. Since there is a tradeoff between the PM and NOx that are discharged from diesel engines, new emission reduction measures will be needed in order to greatly reduce both at the same time. By coating DPFs (Diesel Particulate Filters), which have been studied before, with NOx storage reduction catalysts, it has been found that simultaneous reduction of PM and NOx is possible, and so research was carried out in order to optimize a DPF for this type of system use. The DPF developed was used in the European DPNR (Diesel Particulate-NOx Reduction System) subject vehicles by Toyota Motor Corporation, and actual trial runs in Europe were performed.
Technical Paper

New Conceptual Lead Free Overlays Consisted of Solid Lubricant for Internal Combustion Engine Bearings

2003-03-03
2003-01-0244
Two types of new conceptual lead free overlays are developed for automotive internal combustion(IC) engine bearings. The overlays are consisted of molybdenum disulfide(MoS2) and polyamideimide(PAI) resin for binding. One of the overlays is suitable for diesel engines with higher unit load and the other overlay is suitable for gasoline engines with higher sliding velocity. Both overlays indicate good corrosion resistance and wear resistance comparing with conventional lead base overlay. Moreover, higher fatigue resistance is obtained in combination with high performance lead free bearing alloy. These new bearings have the potential to become alternative materials to conventional copper lead bearings with lead base overlay.
Technical Paper

Multipoint Spark Ignition for Lean Combustion

1985-10-01
852092
Effects of multipoint spark ignition on combustion duration, fuel consumption and lean misfire limit are discussed in this paper. A plate, which consists of 12 spark gaps in each cylinder, and a new CD ignition system have been developed for accomplishing the multipoint spark ignition. This plate was installed between cylinder block and head in a 4 cylinder engine. Compared with a single gap, the results of 12 gaps showed a reduced combustion duration by about 50%, a 5% decrease in fuel consumption and an extended lean misfire limit by about 3 air-fuel ratio numbers. Furthermore, the multipoint spark ignition on both sides of the combustion chamber was more effective than only on one side. With this system, HC emission can be reduced as well. The results of this study showed that, compared to those obtained with swirl, this multipoint spark ignition was more effective on improving fuel consumption.
X